Third Edition

FUNDAMENTALS OF

DIGITAL LOGIC

with Verilog Design

e & "
Stephen Brown —

Zvonko Vranesic

FUNDAMENTALS
OF
DiGciTAL LOoGIC WITH VERILOG DESIGN

THIRD EDITION

Stephen Brown and Zvonko Vranesic
Department of Electrical and Computer Engineering
University of Toronto

~—\ Connect
Learn
Succeed’

~

The McGraw-Hill Companies

A

Connect
Learn
Succeed

~

FUNDAMENTALS OF DIGITAL LOGIC WITH VERILOG DESIGN, THIRD EDITION

Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the Americas,
New York, NY 10020. Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved. No part of
this publication may be reproduced or distributed in any form or by any means, or stored in a database or
retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc., including, but not
limited to, in any network or other electronic storage or transmission, or broadcast for distance learning.

Some ancillaries, including electronic and print components, may not be available to customers outside the
United States.

This book is printed on acid-free paper.
1234567890DOC/DOC109876543

ISBN 978-0-07-338054—-4
MHID 0-07-338054-7

Managing Director: Thomas Timp

Director: Michael Lange

Global Publisher: Raghothaman Srinivasan
Developmental Editor: Vincent Bradshaw
Marketing Manager: Curt Reynolds

Director, Content Production: Terri Schiesl

Senior Project Manager: Melissa M. Leick

Buyer: Susan K. Culbertson

Media Project Manager: Prashanthi Nadipalli
Cover Design: Studio Montage, St. Louis, Missouri
(USE) Cover Image: Steven Brown and Zvonko Vranesic
Compositor: Techsetters, Inc.

Typeface: 10/12 Times Roman

Printer: R. R. Donnelley, Crawfordsville, IN

Library of Congress Cataloging-in-Publication Data

Brown, Stephen.
Fundamentals of digital logic with Verilog design / Stephen Brown and Zvonko Vranesic. — Third edition.
pages cm
ISBN 978-0-07-338054—4 (alk. paper)
1. Logic circuits—Design and construction—Data processing. 2. Verilog (Computer hardware
description language). 3. Computer-aided design. I. Vranesic, Zvonko G. II. Title.

TK7868.L6B76 2014
621.39'2-dc23 2012042163

www.mhhe.com

To Susan and Anne

This page intentionally left blank

ABOUT THE AUTHORS

Stephen Brown received his B.A.Sc. degree in Electrical Engineering from the University
of New Brunswick, Canada, and the M.A.Sc. and Ph.D. degrees in Electrical Engineering
from the University of Toronto. He joined the University of Toronto faculty in 1992, where
he is now a Professor in the Department of Electrical & Computer Engineering. He is also
the Director of the worldwide University Program at Altera Corporation.

His research interests include field-programmable VLSI technology and computer ar-
chitecture. He won the Canadian Natural Sciences and Engineering Research Council’s
1992 Doctoral Prize for the best Ph.D. thesis in Canada and has published more than 100
scientific research papers.

He has won five awards for excellence in teaching electrical engineering, computer
engineering, and computer science courses. He is a coauthor of two other books: Funda-
mentals of Digital Logic with VHDL Design, 3rd ed. and Field-Programmable Gate Arrays.

Zvonko Vranesic received his B.A.Sc., M.A.Sc., and Ph.D. degrees, all in Electrical Engi-
neering, from the University of Toronto. From 1963-1965 he worked as a design engineer
with the Northern Electric Co. Ltd. in Bramalea, Ontario. In 1968 he joined the Univer-
sity of Toronto, where he is now a Professor Emeritus in the Departments of Electrical &
Computer Engineering and Computer Science. During the 1978-1979 academic year, he
was a Senior Visitor at the University of Cambridge, England, and during 19841985 he
was at the University of Paris, 6. From 1995 to 2000 he served as Chair of the Division
of Engineering Science at the University of Toronto. He is also involved in research and
development at the Altera Toronto Technology Center.

His current research interests include computer architecture and field-programmable
VLSI technology.

He is a coauthor of four other books: Computer Organization and Embedded Systems,
6th ed.; Fundamentals of Digital Logic with VHDL Design, 3rd ed.; Microcomputer Struc-
tures; and Field-Programmable Gate Arrays. In 1990, he received the Wighton Fellowship
for “innovative and distinctive contributions to undergraduate laboratory instruction.” In
2004, he received the Faculty Teaching Award from the Faculty of Applied Science and
Engineering at the University of Toronto.

He has represented Canada in numerous chess competitions. He holds the title of
International Master.

PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of the
modern design approach that relies on computer-aided design (CAD) tools.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

We emphasize the use of a hardware description language in specifying the logic cir-
cuits, because the HDL-based approach is the most efficient design method to use in practice.
We describe in detail the IEEE Standard Verilog HDL language and use it extensively in
examples.

vi

PREFACE

ScoPE oF THE BOOK

This edition of the book has been extensively restructured. All of the material that should
be covered in a one-semester course is now included in Chapters 1 to 6. More advanced
material is presented in Chapters 7 to 11.

Chapter 1 provides a general introduction to the process of designing digital systems.
It discusses the key steps in the design process and explains how CAD tools can be used
to automate many of the required tasks. It also introduces the representation of digital
information.

Chapter 2 introduces the logic circuits. It shows how Boolean algebra is used to
represent such circuits. Itintroduces the concepts of logic circuit synthesis and optimization,
and shows how logic gates are used to implement simple circuits. It also gives the reader
a first glimpse at Verilog, as an example of a hardware description language that may be
used to specify the logic circuits.

Chapter 3 concentrates on circuits that perform arithmetic operations. It discusses num-
bers and shows how they can be manipulated using logic circuits. This chapter illustrates
how Verilog can be used to specify the desired functionality and how CAD tools provide a
mechanism for developing the required circuits.

Chapter 4 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 5. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 6 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Chapter 7 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 8 deals with more advanced techniques for optimized implementation of logic
functions. It presents algorithmic techniques for optimization. It also explains how logic
functions can be specified using a cubical representation as well as using binary decision
diagrams.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they provide
an excellent vehicle for gaining a deeper understanding of the operation of digital circuits
in general. They illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit.

Chapter 10 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

vii

viii

PREFACE

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

The electronic aspects of digital circuits are presented in Appendix B. This appendix
shows how the basic gates are built using transistors and presents various factors that affect
circuit performance. The emphasis is on the latest technologies, with particular focus on
CMOS technology and programmable logic devices.

WHAT CAN BE COVERED IN A COURSE

Much of the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized
the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only three to four lecture hours on Verilog, describing how the code should be
structured, including the use of design hierarchy, using scalar and vector variables, and on
the style of code needed to specify sequential circuits. The Verilog examples given in the
book are largely self-explanatory, and students can understand them easily.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

The following material should be covered in lectures:

e Chapter 1—all sections.
e Chapter 2—all sections.
e Chapter 3—Sections 3.1 to 3.5.
e Chapter 4—all sections.
e Chapter 5—all sections.

e Chapter 6—all sections.

One-Quarter Course

In a one-quarter course the following material can be covered:

e Chapter 1—all sections.

e Chapter 2—all sections.

PREFACE

e Chapter 3—Sections 3.1 to 3.3 and Section 3.5.
e Chapter 4—all sections.

e Chapter 5—all sections.

e Chapter 6—Sections 6.1 to 6.4.

VERILOG

Verilog is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 120 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

All of the examples of Verilog code presented in the book are provided on the Authors’
website at

www.eecg.toronto.edu/~brown/Verilog_3e

SOLVED PROBLEMS

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

POWERPOINT SLIDES AND SOLUTIONS MANUAL

PowerPoint slides that contain all of the figures in the book are available on the Authors’
website. Instructors can request access to these slides, as well as access to the Solutions
Manual for the book, at:

www.mhhe.com/brownvranesic

PREFACE

CAD TooLs

Modern digital systems are quite large. They contain complex logic circuits that would be
difficult to design without using good CAD tools. Our treatment of Verilog should enable the
reader to develop Verilog code that specifies logic circuits of varying degrees of complexity.
To gain proper appreciation of the design process, it is highly beneficial to implement the
designs using commercially-available CAD tools. Some excellent CAD tools are available
free of charge. For example, the Altera Corporation has its Quartus I CAD software, which
is widely used for implementing designs in programmable logic devices such as FPGAs.
The Web Edition of the Quartus II software can be downloaded from Altera’s website and
used free of charge, without the need to obtain a license. In previous editions of this
book a set of tutorials for using the Quartus II software was provided in the appendices.
Those tutorials can now be found on the Authors’ website. Another set of useful tutorials
about Quartus II can be found on Altera’s University Program website, which is located at
www.altera.com/education/univ.

ACKNOWLEDGMENTS

We wish to express our thanks to the people who have helped during the preparation of
the book. Dan Vranesic produced a substantial amount of artwork. He and Deshanand
Singh also helped with the preparation of the solutions manual. Tom Czajkowski helped
in checking the answers to some problems. The reviewers, William Barnes, New Jersey
Institute of Technology; Thomas Bradicich, North Carolina State University; James Clark,
McGill University; Stephen DeWeerth, Georgia Institute of Technology; Sander Eller, Cal
Poly Pomona; Clay Gloster, Jr., North Carolina State University (Raleigh); Carl Hamacher,
Queen’s University; Vincent Heuring, University of Colorado; Yu Hen Hu, University of
Wisconsin; Wei-Ming Lin, University of Texas (San Antonio); Wayne Loucks, Univer-
sity of Waterloo; Kartik Mohanram, Rice University; Jane Morehead, Mississippi State
University; Chris Myers, University of Utah; Vojin Oklobdzija, University of California
(Davis); James Palmer, Rochester Institute of Technology; Gandhi Puvvada, University of
Southern California; Teodoro Robles, Milwaukee School of Engineering; Tatyana Roziner,
Boston University; Rob Rutenbar, Carnegie Mellon University; Eric Schwartz, University
of Florida; Wen-Tsong Shiue, Oregon State University; Peter Simko, Miami University;
Scott Smith, University of Missouri (Rolla); Arun Somani, lowa State University; Bernard
Svihel, University of Texas (Arlington); and Zeljko Zilic, McGill University provided con-
structive criticism and made numerous suggestions for improvements.

The support of McGraw-Hill people has been exemplary. We truly appreciate the help
of Raghu Srinivasan, Vincent Bradshaw, Darlene Schueller, Curt Reynolds, and Michael
Lange. We are also grateful for the excellent support in the typesetting of the book that has
been provided by Techsetters, Inc.

Stephen Brown and Zvonko Vranesic

CONTENTS

Chapter 1
INTRODUCTION 1

1.1

1.2
1.3
1.4
1.5

1.6

Digital Hardware 2

1.1.1 Standard Chips 4

1.1.2 Programmable Logic Devices 5

1.1.3 Custom-Designed Chips 5

The Design Process 6

Structure of a Computer 8

Logic Circuit Design in This Book 8

Digital Representation of Information 11

1.5.1 Binary Numbers 12

1.5.2 Conversion between Decimal and
Binary Systems 13

153 ASCII Character Code 14

1.54 Digital and Analog Information 16

Theory and Practice 16

Problems 18

References 19

Chapter 2

INTRODUCTION TO LOGIC
Circulits 21

2.1
22
2.3
24

2.5

2.6

2.7
2.8

Variables and Functions 22

Inversion 25

Truth Tables 26

Logic Gates and Networks 27

24.1 Analysis of a Logic Network 29
Boolean Algebra 33

2.5.1 The Venn Diagram 37
252 Notation and Terminology 42
2.5.3 Precedence of Operations 43

Synthesis Using AND, OR, and NOT

Gates 43

2.6.1 Sum-of-Products and Product-of-Sums
Forms 48

NAND and NOR Logic Networks 54

Design Examples 59

2.8.1 Three-Way Light Control 59

xi

2.8.2 Multiplexer Circuit 60

2.8.3 Number Display 63
2.9 Introduction to CAD Tools 64

29.1 Design Entry 64

29.2 Logic Synthesis 66

293 Functional Simulation 67

294 Physical Design 67

295 Timing Simulation 67

2.9.6 Circuit Implementation 68

29.7 Complete Design Flow 68
2.10 Introduction to Verilog 68

2.10.1 Structural Specification of Logic

Circuits 70
2.10.2 Behavioral Specification of Logic
Circuits 72

2.10.3 Hierarchical Verilog Code 76

2.104 How NOT to Write Verilog Code
2.11 Minimization and Karnaugh Maps 78
2.12 Strategy for Minimization 87

2.12.1 Terminology 87

2.12.2 Minimization Procedure 89
2.13 Minimization of Product-of-Sums Forms
2.14 Incompletely Specified Functions 94
2.15 Multiple-Output Circuits 96
2.16 Concluding Remarks 101
2.17 Examples of Solved Problems 101

Problems 111

References 120
Chapter 3

NUMBER REPRESENTATION AND
ARITHMETIC CIRCUITS 121

3.1 Positional Number Representation 122
3.1.1 Unsigned Integers 122
312 Octal and Hexadecimal

Representations 123

3.2 Addition of Unsigned Numbers 125
3.2.1 Decomposed Full-Adder 129
322 Ripple-Carry Adder 129
323 Design Example 130

xii

CONTENTS

3.3 Signed Numbers 132
3.3.1 Negative Numbers 133
332 Addition and Subtraction 135
333 Adder and Subtractor Unit 138
334 Radix-Complement Schemes* 139
3.35 Arithmetic Overflow 143
33.6 Performance Issues 145
3.4 Fast Adders 145
3.4.1 Carry-Lookahead Adder 146
3.5 Design of Arithmetic Circuits Using CAD
Tools 151
3.5.1 Design of Arithmetic Circuits Using
Schematic Capture 151
352 Design of Arithmetic Circuits Using
Verilog 152
353 Using Vectored Signals 155
354 Using a Generic Specification 156
3.5.5 Nets and Variables in Verilog 158
3.5.6 Arithmetic Assignment Statements 159
3.5.7 Module Hierarchy in Verilog Code 163
3.5.8 Representation of Numbers in Verilog
Code 166
3.6 Multiplication 167
3.6.1 Array Multiplier for Unsigned
Numbers 167
3.6.2 Multiplication of Signed Numbers 169
3.7 Other Number Representations 170
371 Fixed-Point Numbers 170
3.7.2 Floating-Point Numbers 172
3.7.3 Binary-Coded-Decimal
Representation 174
3.8 Examples of Solved Problems 178
Problems 184
References 188
Chapter 4

COMBINATIONAL-CIRCUIT
BuiLDING BLOCKS 189

4.1

4.2

Multiplexers 190

4.1.1 Synthesis of Logic Functions Using
Multiplexers 193

4.1.2 Multiplexer Synthesis Using Shannon’s
Expansion 196

Decoders 201

4.2.1 Demultiplexers 203

4.3 Encoders 205
4.3.1 Binary Encoders 205
432 Priority Encoders 205
4.4 Code Converters 208
4.5 Arithmetic Comparison Circuits 208
4.6 Verilog for Combinational Circuits 210
4.6.1 The Conditional Operator 210
4.6.2 The If-Else Statement 212
4.6.3 The Case Statement 215
4.6.4 The For Loop 221
4.6.5 Verilog Operators 223
4.6.6 The Generate Construct 228
4.6.7 Tasks and Functions 229
47 Concluding Remarks 232
4.8 Examples of Solved Problems 233
Problems 243
References 246

Chapter 5

FLiP-FLOPS, REGISTERS, AND
COUNTERS 247

5.1 Basic Latch 249
5.2 Gated SR Latch 251
5.2.1 Gated SR Latch with NAND Gates 253
5.3 Gated D Latch 253
5.3.1 Effects of Propagation Delays 255
5.4 Edge-Triggered D Flip-Flops 256
54.1 Master-Slave D Flip-Flop 256
542 Other Types of Edge-Triggered D
Flip-Flops 258
543 D Flip-Flops with Clear and Preset 260
544 Flip-Flop Timing Parameters 263
5.5 TFlip-Flop 263
5.6 JKFlip-Flop 264
5.7 Summary of Terminology 266
5.8 Registers 267
5.8.1 Shift Register 267
5.8.2 Parallel-Access Shift Register 267
5.9 Counters 269
5.9.1 Asynchronous Counters 269
592 Synchronous Counters 272
593 Counters with Parallel Load 276
5.10 Reset Synchronization 278
5.11 Other Types of Counters 280
5.11.1 BCD Counter 280
5.11.2 Ring Counter 280

5.11.3
5.11.4

Johnson Counter 283
Remarks on Counter Design 283

5.12 Using Storage Elements with CAD Tools 284

5.12.1

5.122

5.123

5.124

5.12.5

Including Storage Elements in
Schematics 284

Using Verilog Constructs for Storage
Elements 285

Blocking and Non-Blocking
Assignments 288

Non-Blocking Assignments for
Combinational Circuits 293
Flip-Flops with Clear Capability 293

5.13 Using Verilog Constructs for Registers and
Counters 295

5.13.1

5.132

Flip-Flops and Registers with Enable
Inputs 300
Shift Registers with Enable Inputs 302

5.14 Design Example 302

5.14.1
5.142

Reaction Timer 302
Register Transfer Level (RTL) Code 309

5.15 Timing Analysis of Flip-flop Circuits 310

5.15.1

Timing Analysis with Clock Skew 312

5.16 Concluding Remarks 314

5.17 Examples of Solved Problems 315
Problems 321
References 329

Chapter 6

SYNCHRONOUS SEQUENTIAL
Circurrs 331

6.1 Basic Design Steps 333

6.1.1
6.1.2
6.1.3
6.14

6.1.5
6.1.6

State Diagram 333

State Table 335

State Assignment 336

Choice of Flip-Flops and Derivation of
Next-State and Output Expressions 337
Timing Diagram 339

Summary of Design Steps 340

6.2 State-Assignment Problem 344

6.2.1

One-Hot Encoding 347

6.3 Mealy State Model 349
6.4 Design of Finite State Machines Using CAD

Tools
6.4.1
6.4.2
6.4.3

354

Verilog Code for Moore-Type FSMs 355
Synthesis of Verilog Code 356
Simulating and Testing the Circuit 358

CONTENTS xiii

6.4.4 Alternative Styles of Verilog Code 359
6.4.5 Summary of Design Steps When Using
CAD Tools 360
6.4.6 Specifying the State Assignment in
Verilog Code 361
6.4.7 Specification of Mealy FSMs Using
Verilog 363
6.5 Serial Adder Example 363
6.5.1 Mealy-Type FSM for Serial Adder 364
6.5.2 Moore-Type FSM for Serial Adder 367
6.5.3 Verilog Code for the Serial Adder 370
6.6 State Minimization 372
6.6.1 Partitioning Minimization
Procedure 374
6.6.2 Incompletely Specified FSMs 381
6.7 Design of a Counter Using the Sequential
Circuit Approach 383
6.7.1 State Diagram and State Table for a
Modulo-8 Counter 383
6.7.2 State Assignment 384
6.7.3 Implementation Using D-Type
Flip-Flops 385
6.7.4 Implementation Using JK-Type
Flip-Flops 386
6.7.5 Example—A Different Counter 390
6.8 FSM as an Arbiter Circuit 393
6.9 Analysis of Synchronous Sequential
Circuits 397
6.10 Algorithmic State Machine (ASM)
Charts 401
6.11 Formal Model for Sequential Circuits 405
6.12 Concluding Remarks 407
6.13 Examples of Solved Problems 407
Problems 416
References 420

Chapter 7
DiGiTAL SYSTEM DESIGN 421

7.1 Bus Structure 422
7.1.1 Using Tri-State Drivers to Implement a
Bus 422
7.1.2 Using Multiplexers to Implement a
Bus 424
7.1.3 Verilog Code for Specification of Bus
Structures 426
7.2 Simple Processor 429

xiv

CONTENTS

7.3 A Bit-Counting Circuit 441

7.4 Shift-and-Add Multiplier 446

7.5 Divider 455

7.6 Arithmetic Mean 466

7.7 Sort Operation 470

7.8 Clock Synchronization and Timing
Issues 478
7.8.1 Clock Distribution 478
7.8.2 Flip-Flop Timing Parameters 481
7.8.3 Asynchronous Inputs to Flip-Flops 482
7.8.4 Switch Debouncing 483

7.9 Concluding Remarks 485
Problems 485
References 489

Chapter 8

OPTIMIZED IMPLEMENTATION OF
LocGic FuncTIONS 491

8.1

8.2
8.3

8.4

8.5
8.6

Multilevel Synthesis 492
8.1.1 Factoring 493
8.1.2 Functional Decomposition 496
8.1.3 Multilevel NAND and NOR
Circuits 502
Analysis of Multilevel Circuits 504
Alternative Representations of Logic
Functions 510
8.3.1 Cubical Representation 510
8.3.2 Binary Decision Diagrams 514
Optimization Techniques Based on Cubical
Representation 520
8.4.1 A Tabular Method for Minimization 521
8.4.2 A Cubical Technique for
Minimization 529
8.43 Practical Considerations
Concluding Remarks 537
Examples of Solved Problems
Problems 546
References 549

536

537

Chapter 9

ASYNCHRONOUS SEQUENTIAL
Circurrs 551

9.1
9.2

Asynchronous Behavior 552

Analysis of Asynchronous Circuits 556

9.3
9.4
9.5

9.7

9.8
9.9

Synthesis of Asynchronous Circuits 564
State Reduction 577

State Assignment 592

9.5.1 Transition Diagram 595

9.5.2 Exploiting Unspecified Next-State
Entries 598

9.5.3 State Assignment Using Additional
State Variables 602

9.5.4 One-Hot State Assignment 607

Hazards 608

9.6.1 Static Hazards 609

9.6.2 Dynamic Hazards 613

9.6.3 Significance of Hazards 614

A Complete Design Example 616
9.7.1 The Vending-Machine Controller
Concluding Remarks 621
Examples of Solved Problems
Problems 631

References 635

616

623

Chapter 10

COMPUTER AIDED DESIGN
TooLs 637

10.1

10.2

10.3

Synthesis 638
10.1.1 Netlist Generation 638

10.1.2 Gate Optimization 638
10.1.3 Technology Mapping 640
Physical Design 644

10.2.1 Placement 646

10.2.2 Routing 647

10.2.3 Static Timing Analysis 648
Concluding Remarks 650
References 651

Chapter 11
TESTING OF LoGIc CIRcCUITS 653

11.1

11.2
11.3

11.4
11.5

Fault Model 654

11.1.1 Stuck-at Model 654

11.1.2 Single and Multiple Faults 655
11.1.3 CMOS Circuits 655
Complexity of a Test Set 655

Path Sensitizing 657

11.3.1 Detection of a Specific Fault 659

Circuits with Tree Structure 661
Random Tests 662

11.6 Testing of Sequential Circuits 665
11.6.1 Design for Testability 665
11.7 Built-in Self-Test 669
11.7.1 Built-in Logic Block Observer 673
11.7.2 Signature Analysis 675
11.7.3 Boundary Scan 676
11.8 Printed Circuit Boards 676
11.8.1 Testing of PCBs 678
11.8.2 Instrumentation 679
11.9 Concluding Remarks 680
Problems 680
References 683

Appendix A
VERILOG REFERENCE 685

A.1 Documentation in Verilog Code 686

A.2 White Space 686

A.3 Signals in Verilog Code 686

A.4 Identifier Names 687

A.5 Signal Values, Numbers, and Parameters 687
AS.1 Parameters 688

A.6 Net and Variable Types 688
A.6.1 Nets 688
A.6.2 Variables 689
A.63 Memories 690

A.7 Operators 690

A.8 Verilog Module 692

A.9 Gate Instantiations 694

A.10 Concurrent Statements 696
A.10.1 Continuous Assignments 696
A.10.2 Using Parameters 697

A.11 Procedural Statements 698
A.11.1 Always and Initial Blocks 698
A.11.2 The If-Else Statement 700
A.11.3 Statement Ordering 701
A.11.4 The Case Statement 702
A.11.5 Casez and Casex Statements 703
A.11.6 Loop Statements 704
A.11.7 Blocking versus Non-blocking

Assignments for Combinational
Circuits 708

A.12 Using Subcircuits 709
A.12.1 Subcircuit Parameters 710
A.12.2 The Generate Capability 712

A.13 Functions and Tasks 713

CONTENTS XV

A.14 Sequential Circuits 716

A.14.1 AGated D Latch 717

A.142 D Flip-Flop 717

A.14.3 Flip-Flops with Reset 718

A.144 Registers 718

A.14.5 Shift Registers 720

A.14.6 Counters 721

A.14.7 An Example of a Sequential Circuit 722

A.14.8 Moore-Type Finite State Machines 723

A.149 Mealy-Type Finite State Machines 724
A.15 Guidelines for Writing Verilog Code 725
A.16 Concluding Remarks 731

References 731

Appendix B

IMPLEMENTATION
TECHNOLOGY 733

B.1 Transistor Switches 734

B.2 NMOS Logic Gates 736

B.3 CMOS Logic Gates 739
B.3.1 Speed of Logic Gate Circuits 746

B.4 Negative Logic System 747

B.5 Standard Chips 749
B.5.1 7400-Series Standard Chips 749

B.6 Programmable Logic Devices 753
B.6.1 Programmable Logic Array (PLA) 754
B.6.2 Programmable Array Logic (PAL) 757
B.6.3 Programming of PLAs and PALs 759
B.6.4 Complex Programmable Logic Devices

(CPLDs) 761

B.6.5 Field-Programmable Gate Arrays 764

B.7 Custom Chips, Standard Cells, and Gate
Arrays 769

B.8 Practical Aspects 771
B.8.1 MOSFET Fabrication and Behavior 771
B.8.2 MOSFET On-Resistance 775
B.8.3 Voltage Levels in Logic Gates 776
B.8.4 Noise Margin 778
B.8.5 Dynamic Operation of Logic Gates 779
B.8.6 Power Dissipation in Logic Gates 782
B.8.7 Passing 1s and Os Through Transistor

Switches 784

B.8.8 Transmission Gates 786
B.8.9 Fan-in and Fan-out in Logic Gates 788
B.8.10 Tri-state Drivers 792

xVvi CONTENTS

B.9 Static Random Access Memory (SRAM) 794
B.9.1 SRAM Blocks in PLDs 797

B.10 Implementation Details for SPLDs, CPLDs,
and FPGAs 797
B.10.1 Implementation in FPGAs 804

B.11 Concluding Remarks 806

B.12 Examples of Solved Problems

Problems

814

References 823

ANSWERS
INnDEX 839

825

807

chapter

INTRODUCTION

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Digital hardware components
e An overview of the design process
e Binary numbers

e Digital representation of information

2 CHAPTER 1 e INTRODUCTION

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly-used products like
music and video players, electronic games, digital watches, cameras, televisions, printers, and many household
appliances, as well as in large systems, such as telephone networks, Internet equipment, television broadcast
equipment, industrial control units, and medical instruments. In short, logic circuits are an important part of
almost all modern products.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived
from elementary ones. We cover the classical theory used in the design of logic circuits because it provides
the reader with an intuitive understanding of the nature of such circuits. But, throughout the book, we
also illustrate the modern way of designing logic circuits using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called the Verilog hardware description language. Design with Verilog is first introduced in Chapter 2, and
usage of Verilog and CAD tools is an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly
available chips that use modern technology may contain more than a billion transistors, as in the case of some
computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing
simple about a circuit that contains billions of transistors. The complexity that comes with large circuits can
be handled successfully only by using highly-organized design techniques. We introduce these techniques in
this chapter, but first we briefly describe the hardware technology used to build logic circuits.

| 1.1 DiGITAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will be explained in Section 1.5—it derives from the way in which information is
represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
few decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single chip.
In the beginning these circuits had only a few transistors, but as the technology improved
they became more complex. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers.

1.1 DiGITAL HARDWARE

Figure 1.1 Asilicon wafer (courtesy of Altera Corp.).

About 30 years ago Gordon Moore, chairman of Intel Corporation, observed that in-
tegrated circuit technology was progressing at an astounding rate, approximately doubling
the number of transistors that could be placed on a chip every two years. This phenomenon,
informally known as Moore’s law, continues to the present day. Thus in the early 1990s
microprocessors could be manufactured with a few million transistors, and by the late 1990s
it became possible to fabricate chips that had tens of millions of transistors. Presently, chips
can be manufactured containing billions of transistors.

Moore’s law is expected to continue to hold true for a number of years. A consortium
of integrated circuit associations produces a forecast of how the technology is expected
to evolve. Known as the International Technology Roadmap for Semiconductors (ITRS)
[1], this forecast discusses many aspects of technology, including the maximum number of
transistors that can be manufactured on a single chip. A sample of data from the ITRS is given
in Figure 1.2. It shows that chips with about 10 million transistors could be successfully
manufactured in 1995, and this number has steadily increased, leading to today’s chips with
over a billion transistors. The roadmap predicts that chips with as many as 100 billion
transistors will be possible by the year 2022. There is no doubt that this technology will
have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or designing circuits that involve a number of chips placed
on a printed circuit board (PCB). Frequently, some of the logic circuits can be realized

CHAPTER 1 . INTRODUCTION

[

105—— --------------------------- - -

104—— —————————————

'
'
'
'
- - - - - -
'
'
'
'

103 B T T T

102 1 ™)

Millions of transistors/chip

10 p— }
1995 2000 2005 2010 2015 2020 2025

Year of production

Figure 1.2 An estimate of the maximum number of transistors per chip
over time.

in existing chips that are readily available. This situation simplifies the design task and
shortens the time needed to develop the final product. Before we discuss the design process
in detail, we should introduce the different types of integrated circuit chips that may be
used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from simple ones with low function-
ality to extremely complex chips. For example, a digital hardware product may require a
microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For many digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly-used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.

1.1 DiGITAL HARDWARE

Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LoGIic DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry which can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured in
many different ways. The designer can implement whatever functions are required for a
particular application by setting the programmable switches as needed. The switches are
programmed by the end user, rather than when the chip is manufactured. Such chips are
known as programmable logic devices (PLDs).

PLDs are available in a wide range of sizes, and can be used to implement very large
logic circuits. The most commonly-used type of PLD is known as a field-programmable
gate array (FPGA). The largest FPGAs contain billions of transistors [2, 3], and support the
implementation of complex digital systems. An FPGA consists of a large number of small
logic circuit elements, which can be connected together by using programmable switches
in the FPGA. Because of their high capacity, and their capability to be tailored to meet the
requirements of a specific application, FPGAs are widely used today.

1.1.3 CustoM-DESIGNED CHIPS

FPGAs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, they also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-
cuits. Thus in some cases FPGAs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry that
must be included on the chip is designed first and then the chip is manufactured by a com-
pany that has the fabrication facilities. This approach is known as custom or semi-custom
design, and such chips are often called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.

CHAPTER 1 . INTRODUCTION

A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if an FPGA
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of environments. For example, designing an automobile is similar in the general
approach to designing a furnace or a computer. Certain steps in the development cycle must
be performed if the final product is to meet the specified objectives.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.

1.2 THE DESIGN PROCESS

Required product

Define specifications

l

Initial design

/

Simulation Redesign

l

. No
Design correct? - -
Yes + —
Prototype implementation Make corrections
Testing
Minor errors?

l

Meets specifications?

Finished product

Figure 1.3 The development process.

CHAPTER 1 . INTRODUCTION

1.3 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.4a. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB, called
the motherboard. As indicated on the bottom of the figure, the motherboard holds several
integrated circuit chips, and it provides slots for connecting other PCBs, such as audio,
video, and network boards.

Figure 1.4b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a
logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.4b—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.4 Locic Circult DESIGN IN THIS BooOk

In this book we use a modern design approach based on the Verilog hardware description
language and CAD tools to illustrate many aspects of logic circuit design. We selected
this technology because it is widely used in industry and because it enables the readers to
implement their designs in FPGA chips, as discussed below. This technology is particularly
well-suited for educational purposes because many readers have access to facilities for using
CAD tools and programming FPGA devices.

To gain practical experience and a deeper understanding of logic circuits, we advise
the reader to implement the examples in this book using CAD software. Most of the ma-
jor vendors of CAD systems provide their software at no cost to university students for
educational use. Some examples are Altera, Cadence, Mentor Graphics, Synopsys, and
Xilinx. The CAD systems offered by any of these companies can be used equally well
with this book. Two CAD systems that are particularly well-suited for use with this book
are the Quartus II software from Altera and the ISE software from Xilinx. Both of these
CAD systems support all phases of the design cycle for logic circuits and are powerful
and easy to use. The reader is encouraged to visit the website for these companies, where

1.4 Locic Circult DESIGN IN THIS Book

Computer 3

’ Power supply .

—
©

Y Motherboard '
N . Printed circuit boards .’
o[.
Integrated circuits, -~ .
connectors, and -~ .
components .’ . .

! NNnOnnn

{}
{

oo

Motherboard ,

Figure 1.4 A digital hardware system (Part a).

